
Developing with Breaking The Multi-Colored Box – 0.5a
Sumit Khanna – http://penguindreams.org/page/see/Bmcb -sumit (a-t) penguindreams.org

The following is an incomplete developers guide for the 0.5 alpha release of Breaking the
Multi Colored Box (BMCB). It is part of a much larger document that I hope to
eventually publish in its entirety.

The engine is function and the developers guide, combined with the installation
documentation, is enough for any experienced Java programmer to get started developing
with the BMCB framework.

In the upcoming weeks, I hope to enlist the aid of other open source developers in
expanding the existing engine to use new analysis techniques. This documentation and
the framework are licensed as GNU GPL (currently GNU GPLv3).

Thank you for your interested. Feel free to e-mail me at the above address if you have
any questions.

 62

Appendix B – Developing with the Engine

The Bmcb Engine is comprised of several components including the Generators,

Segmentators, Image Filters, Analyzers and Utilities. All these components are called

through a Workflow. New workflows must be added to the entry point of the program.

This guide is intended for developers who want to modify the engine for their own

analysis techniques and build new experiments into the engine.

This document follows a bottom up approach focusing on the individual

components and building up to incorporating all these components into the full engine.

Many useful examples are included with the engine itself and should be read alongside

this document to gain a full understanding of how to build new experiments into the

existing framework.

Utility Classes

There are several independent utility classes contained within the framework that

are used throughout the application. Many of these classes contain static standalone

methods for basic tasks such as image conversion, logging, configuration, result graphing

and various other common tasks [Figure 27 - Diagram of Utility Classes].

 63

Figure 27 - Diagram of Utility Classes

Some of the more important utilities are as follows:

• Application Logger: This class is called from many of the abstract classes in the

framework to initialize a protected log variable. Developers shouldn’t need to call

this directly unless they create a new class from scratch as the existing log

variable is accessible in nearly every abstract class. Examples for creating new

instances are located in the abstract classes.

• Image Loader: This class contains several functions to assist with image

manipulation including image loading, converting between Images and Buffered

Images, determining the path of an image from a dataset, converting images to

 64

PNM files used by OCR programs, and drawing lines on segment boundaries on

images to be used with the Segment Viewer debugging tool.

• Process Executor: A simple class to handle the basic task of running an external

process.

• Config Map: Used to read in settings from the bmcb.property file

Generators

The engine comes with a command line generation class which passes two

arguments to a command line application, the first being the CAPTCHA to be produced

and the second being the location to write the file to. This process can be seen in the

built-in generation workflow where random challenge/responses are generated, stored in

a database and then generated for each CAPTCHA type.

Typically, a CAPTCHA application is not setup to take in challenge, but rather it

generates it randomly. Therefore the CAPTCHA script needs to be modified. For the

purposes of using this engine, it is best to use open source CAPTCHAs which can easily

be modified. The following changes may be necessary before using a CAPTCHA script

with this engine:

• Modify the program to take in the CAPTCHA phrase as the first argument

• Write the output to a file given by the second argument

 65

• Adjust the front path to be independent from the scripts location

The following examples detail how these three modifications can be performed in

a typical PHP based CAPTCHA script. Each CAPTCHA script a developer wants to

incorporate will require different modifications to be compatible with the built in

Command Line Generator, or it may require a custom generator specifically for it.

Modifying the CAPTCHA application to take the input from a command line,

rather than generating it randomly, can be done several ways. The developer can modify

the function that generates the random CAPTCHA, or the point at which the key is saved

to the session can be modified [Figure 28].

Figure 28 - Modification to Gotcha to take Challenge Input

Most CAPTCHA scripts have a function used to generate a random phrase or set

of letters. This section is what must be modified in order to use the script with the engine.

The type of modification will vary depending on the programming language used and

may require the creation of a customized generation class.

Typically, most CAPTCHA scripts are designed to output directly to a web

 66

browser. This behavior must also be modified to write the file, with the challenge

solution as the filename, to a directory [Figure 29].

Figure 29 - Modification of Freecap to Output Challenge to a File

As with the previous modification, this will vary heavily depending on the

programming language of the script and the script itself.

Another modification that may or may not be necessary involves modifying the

path for included and dependent files. For many of the scripts included with the engine,

this involved modifying the statement that declared which font to use to be current

directory independent [Figure 30].

 67

Figure 30 - Modification of Gotcha for Font Path

The above modification may or may not be necessary depending on the way the

script loads its fonts and dependencies.

The above modifications are only some of the chances that may need to be made

to a CAPTCHA application in order to get it to work with the engine. Developers may

run into other challenges, however most CAPTCHA should be adaptable, either by

extending the Abstract Command Line Generator or by creating a custom generator class,

so long as the CAPTCHA application provides some means for manually inputing the

challenge response.

Image Filters

Image Filters extend the Abstract Filter class. They must modify a Buffered

Image that is passed to the filter by reference. If the calling class requires an unaltered

version of the Buffered Image, it must clone a copy before passing it to the filter.

 68

In addition, if a new Buffered Image is created during the filtering process, it can

be copied into the passed in argument. An example is the function for edge filtering

which returns a new Buffered Image object[Figure 31].

Figure 31 - Copying one Buffered Image to Anohter

Segmentators

Segmentators are based on the Abstract Segmentator class. An instance of all the

segmentator objects is created specifically for an image. Derived classes must implement

the abstract getSegmentAxes function which returns the x coordinate where the image is

split into separate vertical segments. Various other function in the base class can be

 69

called to split the image into individual arrays of Buffered Image to be used within the

workflows[Figure 32].

Figure 32 - Class Diagram for Segmentator Classes

Analyzers

Analyzers are what actually try to solve the CAPTCHA challenge after

appropriate filters and segmentation has been applied. The Abstract Analyzer has been

designed to contain several functions in the case of learning and non-learning algorithms

and well as different functions for analyzing segments as opposed to full images.

Analyzers which don’t support a given abstract function can choose to throw an Analysis

Not Supported Exception. An abstract Command Line Analyzer has been included to

assist in the process of calling an external application for analysis [Figure 33].

 70

Figure 33 - Class Diagram for Analyzers

Workflows

The piece that ties all the individual components together is the workflow. The

workflow calls all the individual pieces listed so far and can be used for generation of set

data, analysis, or any various other tasks. The workflows included with the engine are

used for data generation, analysis and testing. Developers will want to either modify

existing workflows or create new workflows for whatever experiments they may wish to

perform [Figure 34].

 71

Figure 34 - Class Diagram for Workflow Classes

The Abstract Workflow class contains a protected runSpecifc() function which

takes in all the individual components including a Segmentator, Filter and Analyzer,

along with a description for results and logging purposes, and runs them against all the

 72

currently available datasets.

Entry Point

The BMCBMain class provides the primary entry point for the application. After

creating additional workflows, an appropiate command line argument or set of command

line arguments will be need to be added to the main function to kick off the workflow.

Visual Debugging Tools

There is also a Segment Viewer packaged with the engine. It is a graphical tool to

view data sets as well as the results from segmentators, image filters and analyzers[Figure

35].

 73

Figure 35 - Visual Debugger

Newly created Segmentators, Analyzers and Image Filters can easily be added to

the Segment Viewer.

